Green's Function Method for the Radiative Transfer Problem. I. Homogeneous non-Lambertian Surface.
نویسندگان
چکیده
An application of the Green's function method to the one-dimensional radiative transfer problem with a non-Lambertian surface is described. This method separates atmospheric radiative transport from the lower boundary condition and allows expressing a solution analytically for an arbitrary surface reflectance. In the physical sense, the Green's function represents bidirectional atmospheric transmission for the unitary radiance source located at the bottom of the atmosphere. The boundary-value problem for the Green's function is adjoint to the problem for atmospheric path radiance, and therefore it can be solved by use of existing numerical methods by reversal of the direction of light propagation. From an analysis of an exact operator solution and extensive numerical study, we found two accelerating parameterizations for computing the surface-reflected radiance. The first one is a maximum-eigenvalue method that is comparable in accuracy with rigorous radiative transfer codes in calculations with realistic land-cover types. It requires a total of the first three orders of the surface-reflected radiance. The second one is based on the Lambertian approximation of multiple reflections. Designed for operational applications, it is much faster: Already the first-order reflected radiance ensures an average accuracy of better than 1%.
منابع مشابه
Green's function method in the radiative transfer problem. II. Spatially heterogeneous anisotropic surface.
The most recent theoretical studies have shown that three-dimensional (3-D) radiation effects play an important role in the optical remote sensing of atmospheric aerosol and land surface reflectance. These effects may contribute notably to the error budget of retrievals in a broad range of sensor resolutions, introducing systematic biases in the land surface albedo data sets that emerge from th...
متن کاملFour-stream solution for atmospheric radiative transfer over a non-Lambertian surface.
An analytical model characterizing the atmospheric radiance field over a non-Lambertian surface divides the radiation field into three components: unscattered radiance, single-scattering radiance, and multiple-scattering radiance. The first two components are calculated exactly. A δ-four-stream approximation is extended to calculate the azimuth-independent multiple-scattering radiance over a no...
متن کاملMathematical aspects of BRDF modeling : adjoint problem and Green ' s function
− Adjoint formulation of three−dimensional radiative transfer and the Green's function concept have been developed in neutron transport several decades ago. This is not merely yet another method of simulating the radiative transfer process, but a method of reformulating the problem to better incorporate existing radiation models into a particular research. In the case of photon transport in veg...
متن کاملNumerical Analysis of Transient Heat Transfer in Radial Porous Moving Fin with Temperature Dependent Thermal Properties
In this article, a time dependent partial differential equation is used to model the nonlinear boundary value problem describing heat transfer through a radial porous moving fin with rectangular profile. The study is performed by applying a numerical solver in MATLAB (pdepe), which is a centered finite difference scheme. The thermal conductivity and fin surface emissivity are linearly ...
متن کاملConvergence of vector spherical wave expansion method applied to near-field radiative transfer.
Near-field radiative transfer between two objects can be computed using Rytov's theory of fluctuational electrodynamics in which the strength of electromagnetic sources is related to temperature through the fluctuation-dissipation theorem, and the resultant energy transfer is described using the dyadic Green's function of the vector Helmholtz equation. When the two objects are spheres, the dyad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 40 21 شماره
صفحات -
تاریخ انتشار 2001